دوره 14، شماره 2 - ( دوره 14، شماره 2، 1397 )                   جلد 14 شماره 2 صفحات 153-165 | برگشت به فهرست نسخه ها

XML English Abstract Print


1- استادیار، گروه آمار زیستی، دانشکده بهداشت و مرکز تحقیقات مدل‌سازی بیماری‌های غیر واگیر، دانشگاه علوم پزشکی همدان، همدان، ایران
2- کارشناس ارشد آمار زیستی، گروه آمار زیستی، دانشکده بهداشت، دانشگاه علوم پزشکی همدان، همدان، ایران ، n.shirmohammadi@edu.umsha.ac.ir
3- مربی، گروه علوم پایه، دانشگاه صنعتی همدان، همدان، ایران
4- استادیار، گروه جغرافیا، دانشگاه سیدجمال‌الدین اسدآبادی، همدان ،اسدآباد، ایران
چکیده:   (2183 مشاهده)

مقدمه و اهداف: شناسایی مدل‏های آماری دارای پیش‏بینی‏های دقیق در تعیین دقیق و به‌هنگام طغیان بیماری‏های عفونی در نظام مراقبت بهداشتی این بیماری‏ها بسیار با اهمیت است. این مطالعه با هدف ارزیابی و مقایسه عملکرد سه روش یادگیری ماشین در مدل‏سازی و پیش‏بینی سری زمانی بروسلوز بر اساس پارامترهای اقلیمی انجام شد.
روش کار: در این مطالعه موارد بروسلوز انسانی و پارامترهای اقلیمی به‌صورت ماهانه، در طول 12 سال (95-1383) از استان همدان واقع در غرب ایران تحلیل شد. داده‏ها به دو زیرمجموعه آموزش (80 درصد) و آزمون (20 درصد) تقسیم شد. روش‏های تابع پایه شعاعی و چند لایه پروسپترون و نزدیک‌ترین همسایه سری زمانی به هر زیرمجموعه برازش شد. ارزیابی عملکرد مدل‏ها با استفاده از معیارهای RMSE، MAE، MRAE، R2 و ICC انجام شد.
یافته‌ها: نتایج نشان داد که مقادیر معیارهای (79/23)RMSE، (56/20)MAE، (25/0)MRAE برای مدل شبکه عصبی چند لایه پرسپترون کوچک‌تر از مقادیر آن‏ها در دو مدل دیگر بود. هم‌چنین، در این مدل مقادیر بزرگ‌تری برای معیارهای (61/0)R2 و (75/0)ICC به‌دست آمد. بنابراین مدل شبکه‌ی عصبی چند لایه پرسپترون در پیش‏بینی داده‏های مورد مطالعه عملکرد بهتری داشت. دما نسبت به سایر پارامترهای اقلیمی مؤثرترین عامل در بروز این بیماری بود.
نتیجه‌گیری: شبکه عصبی چندلایه پرسترون می‏تواند به‌عنوان یک روش کارا برای تشخیص رفتار روند بروسلوز در طول زمان به کار رود. با این حال مطالعات بیش‌تری با هدف کاربرد و مقایسه این‏ روش‏ها برای شناسایی مناسب‏ترین روش پیش‏بینی روند این بیماری مورد نیاز است.
متن کامل [PDF 1902 kb]   (445 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: عمومى
دریافت: ۱۳۹۷/۷/۴ | پذیرش: ۱۳۹۷/۷/۴ | انتشار: ۱۳۹۷/۷/۴